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ABSTRACT

Several samples of a silicon-nitrogen elastomer were characterized. Characteri-
zation included structure analysis (elemental composition, IR, and NMR), solubility,

solution viscosity, thermal properties (TGA and subambient DTA), and.molecular weight
(Mn, Mw, GPC distribution). The samples appeared to have the expected structure,
i.e. , linear polymers, began to volatilize appreciably above 500 C, had a Tg at -27 C,
and a broad molecular-weight distribution with Mw as high as 250, 000.

Several samples of the perfluoroalkyl bibenzoxazole polymers were examined.
Considerable effort was directed toward determination of the molecular weight of both
perfluorosebacate and perfluoroalkyl ether-linked polymers. In addition, solubility,
thermal stability and subambient DTA of the perfluoroalkyl ether-linked polymers
(elastomers) were investigated.

Samples of the aromatic heterocyclic-ladder type were studied. Mass-spectral
identification of the volatiles produced by programmed heating of an incompletely cy-
clized sample indicated that decarboxylation occurs within the same temperature range
as does the cyclization.

The product obtained by heating 1-carboxy-2-chloroferrocene was studied. The
reaction mechanism was investigated by structural analysis of the product and analysis
of the volatiles produced during reaction.

Several samples of polyspirocyclobutane polymers were characterized. Character-
ization includes structural analysis, solubility, and thermal properties.

The approach to solvent search was examined in the light of recent literature. It
was concluded that division of the solubility parameter into electrostatic and covalent
contributions would describe solvent properties pertinent to solution formation. This
was supported by examination of solubility data for several polymers.

This document is subject to special export controls and each transmittal to foreign
governments or foreign nationals may be made only with prior approval of the Polymer
Branch, MANP, Nonmetallic Materials Division, Air Force Materials Laboratory,
Wright-Patterson AFB, Ohio 45433.
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I

INTRODUCTION

In recent years, the Air Force has been faced with a growing need for new materi-

als for use in extreme environments. As a result, a sizable polymer synthesis pro-
gram has been supported. In general, an initial screening for probable structure, pos-
sible applications, and upper service temperature is performed as part of these synthesis
programs. However, much greater benefit from the synthesis programs is possible if
all polymeric products are thoroughly characterized by a single laboratory whose pri.-
mary interest is polymer characterization. Accumulation of characterization data by
one laboratory eventually leads to development of structure-property correlations which
can be used to direct synthesis programs to more fruitful approaches to useful polymers.
Additional incentive for characterization of synthesis products by characterization spe-
cialists is to provide impartial and rapid recognition of the potential of candidate mate-
rials. This report is a description of work performed at Battelle on such a characteriza-
tion program.

In general, characterization includes structure identification, solvent search,
thermal properties, solution viscosity, and molecular weight. Infrared (IR) and nuclear
magnetic resonance (NMR) spectra, and elemental analysis were used for structure iden-
tification. Since determination of the primary structure of samples was part of the syn-
thesis programs, only the general features of the structure were examined. Solubility
and swelling behavior of candidate materials was predicted from examination of mixtures
of the materials with solvents which provided systematic variation of the electrostatic
and covalent solubility parameters.

Differential thermal analysis (DTA) was used to measure the magnitude and tem-
perature range of any thermal transitions produced during programmed temperature rise.
An indication of the thermal stability of the material was obtained by thermogravimetric

analysis (TGA). In a few cases, the TGA data were supplemented by mass spectral
identification of thermal-fragmentation products to provide insight into the fragmentation
mechanism.

Solution-viscosity measurements provided an estimate of sample molecular weight.
Generally, the specific viscosity was determined at several concentrations to avoid the
possibility of not observing polyelectrolyte effects. When more precise molecular
weights were desired, osmometric techniques were used to provide number-average
molecular weight (Mn). Also, the molecular weight distribution was determined by
gel-permeation chromatography (GPC) when suitable solvents were available.



II

EQUIPMENT AND PROCEDURES

Details of the equipment and characterization techniques used in this program not
referred to in this section have been reported previously(l, Z)-*

Light Scattering

All light-scattering-intensity measurements are made with the sophica light-
scattering instrument. The alignment of the instrument and the uniformity of the
scattering cells were checked by use of a 60:40 water-ethanol solution of fluorescein.
Constancy to better than 1 percent of the product of the fluroescing intensity and the sine
of the angle of observation was obtained. By use of a 10 mV Honeywell Brown Electronik
recorder to observe the scattering intensity, the intensity readings were accurate to
d 0. 2 percent.

A Phoenix Precision differential refractometer was used for determination of the
refractive index increment of solutions, i.e., dn/dc. The cell chamber was insulated
and the cap supplied with the instrument replaced by a 3/4-inch aluminum cap to per-
mit operation at elevated temperature. Temperature control in the chamber after

these modifications was better than =ý 0. 1 C.

Differential Thermal Analysis (DTA)

In addition to the Model 12AC Stone DTA described in a previous report(l),
Battelle has recently acquired a new Stone DTA. This instrument includes a 202 series
Stone recorder-controller, a model H-5 subambient and a model JP-ZOZ elevated-
temperature platform, furnaces and cells, which permit the following:

(1) Continuously variable heating rates from 0. 5 C per minute to 50 C

per minute, with infinitely variable upper and lower temperature
limits and five automatic switch modes including standby, hold, heat,
cool, and cycle

(2) Infinitely variable AT sensitivity with a maximum sensitivity of
0. 002 C per chart division

(3) Choice of eight temperature scales from -150 C to +160 C and
from 0. 0 C to +1600 C

(4) The data output is recorded on a three-channel strip-chart re-
corder which displays temperature, AT, and the first derivative
of AT

(5) Normal sample pressure can be controlled from 1 x 10-2 torr
to 100 psia with the standard platform (acquisition of a special

*Superscript numbers denote references given at the end of this report.

Z



holder would extend this range, if required, from I x 10-6 torr
to 3000 psia)

(6) Use of a high-temperature furnace and cell to extend the normal
temperature range from 1100 C to +1600 C by simple plug-in of
the high temperature cell.

3



III

RESULTS AND DISCUSSION

Silicon-Nitrogen Polymers

Initial characterization results on samples of the polymeric products of the ther-
mally induced condensation of N, N'-bis (dimethylaminodimethylsilyl)tetramethyl-
cyclodisilazane with bis (p-dimethylhydroxysilylphenyl) ether suggested that they have
elastomeric properties and good thermal stability. (2) However, rapid crosslinking of
the product during storage produced a nonmillable gel. Recent work by Breed et al. , (3)
indicates that the rate of crosslinking is greatly reduced when the condensation product
is "end-capped" with bis (trimethylsilyl) acetamide to produce trimethylsilyl end groups.
They report that the inherent viscosity and solubility of several end-capped samples re-
mained unchanged after storage for 30 days.

Three samples of end-capped polymers were submitted to Battelle for character-
ization. One of these, labelled HR-109, was chosen as representative of these poly-
mers and characterized as to structure, thermal properties, solubility, molecular
weight, and molecular weight distribution. This sample plus the remaining two, labelled
HR-111 and HR-112, were submitted to generate viscosity - molecular weight relations.

The infrared (IR) spectrum of sample HR-109 (see Figure 1) obtained by ArRo
Laboratories, Incorporated, on a KBr smear is in good agreement with the proposed
structure:

CH 3 CH 3

Si3 CH 3  CH 3  C H3
Si Si-0 -01 0 Si-0I i I
CH 3  Si % CH 3  t'3

CH3 CH 3
_- n

The bands at 1580 and 1500 cm-1 are consistent with a para disubstituted benzene, the
1115 cm-1 absorption with a phenyl-silicon bond, the 1260 cm- 1 band with a methyl-
silicon bond, the 1075 and 10Z0 bands with a siloxane, the bands at IZ50 and 100Z with a
diphenyl ether and the bands between 750 and 860 cm-1 with carbon-silicon absorptions.
An X-ray analysis of bis(trimethylsilyl) tetramethylcyclodisilazane by Wheatley(4 ) sug-

gests that the methyl groups on the cyclodisilazane ring may not be equivalent. This
could lead to four absorption bands in the 750-860 cm-1 region as observed by infrared
spectroscopy (IR). According to Breed and Elliot(5), the weak absorption at 950 cm-I
indicates that very little ring cleavage has occurred.

The nuclear magnetic resonance (NMR) spectrum of the sample in toluene (see
Figure 2) was obtained as an additional check of the structure and as a means of iden-

tifying the source of the four bands in the 750-860 cm-l region of the IR spectrum.

4
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While four distinct aliphatic proton resonances were observed, it appears that one of
them arises from substantial residual dimethyl amine. NMR spectra of model com-
pounds, kindly supplied by L. W. Breed, greatly aided this interpretation. Since para-
disubstituted aromatic absorptions occur in the 750 to 850 cm- 1 region of the IR
spectrum, the extra band in this region of the spectrum is most probably produced by
the para-disubstituted benzenes. Either the differences in bond length and electronic
environment of the two methyl groups on the cyclodisilazane predicted by the X-ray
measurements are too small to resolve or they exchange relatively rapidly with respect
to the measurement period of IR and NMR.

The elemental analysis of sample HR-109, shown in Table I, is in good agreement
with that calculated for the proposed structure, with the exception of the silicon content
reported by Clark Microanalytical Laboratories. The consistency of the spectral data

and the Spang Microanalytical Laboratory silicon analysis with the proposed structure
suggests that some error was made in the Clark analysis.

TABLE I. ELEMENTAL ANALYSIS OF SILICON-NITROGEN
POLYMER SAMPLE HR-109

Analysis, percent

Element Calculated Observed

C 49.93 49. 12(a)

H 7.69 7. 61(a)

N 4.85 4. 8 4 (a)

Si 29.19 11.57(a), 3 0 . 4 6 (b)
0 8.31

(a) Average of duplicate analysis by Clark Microanalytical Laboratory.
(b) Average of duplicate analysis by Spang Microanalytical Laboratory.

A solvent search was performed with this sample by the microscopic technique(l)
using the solvent list developed to provide solvent-property variation based on division
of the solubility parameter into electrostatic and covalent portions. It is clear from
the solvent formulating map (Figure 3), that the sample will form greater than 0. 1 per-
cent solutions with solvents having a large range of properties. In addition, the lack of
solubility in solvents with a high electrostatic solubility parameter indicates the inter-

molecular forces in solution are principally nonpolar.

The TGA thermogram of the "as-received" sample of HR-109 (Figure 4) shows
that volatilization of the sample starts above 300 C. However, the magnitude of the
weight loss between 300 and 500 C suggests that it may arise from loss of impurities
rather than breakdown of the polymer into volatile fragments. Isothermal aging or
analysis of the volatiles could be employed to determine the mechanism of this early
weight loss. An attempt to identify the volatiles by use of the TGA.-mass spectrometer
(AEI MS-10) was unsuccessful. No appreciable volatiles attributable to decomposition
fragments or trapped solvent were identified.

7
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The TGA thermogram of Sample HR-105, a Si-N polymer previously character-
ized(?), is included in Figure 4 to illustrate the effect of end-capping on thermal stability.
While the differences between the thermograms exceed experimental error (particularly
between 300 and 500 C), the differences could reflect different molecular weight distribu-
tions or contamination. The magnitude of the differences suggests that the end-capping
has not changed thermal stability significantly.

The glass-transition temperature of Sample HR- 112 was determined on Battelle's
subambient DTA (see "Equipment and Procedures" section for description). The
thermogram (see Figure 5) indicates a glass transition at -27 C. This transition was
confirmed by thermograms obtained with different amounts of sample.

Obviously, characterization of an impure polymer would result in development of
erroneous structure-property relations. Since this sample had an amine odor when
received, contamination with dimethylamine, a reaction by-product, was suspected.
Such contamination could also be the source of the weight loss between 300 and 500 C
observed by TGA. Freeze drying from benzene was investigated as a means for re-
moving the volatile contamination. This technique was chosen because a relatively
porous structure is maintained during evacuation.

The NMR spectrum and the TGA thermogram of the freeze-dried sample were
obtained to assess whether the dimethylamine was completely removed. Ethanol-free
chloroform was used in place of the toluene employed in the initial NMR analysis to avoid
interference with the aromatic protons. The NMR spectrum indicated complete removal
of dimethylamine and a structure consistent with the proposed structure. The proton
resonances from the methyl groups on the cyclodisilazane were also equivalent in this
solvent. In view of this NMR data, the presence of material which begins to volatilize
at 150 C as indicated in the TGA thermogram of this sample (see Figure 6) is quite
surprising. The marked difference in the TGA thermogram of this polymer produced
by the freeze drying and the absence of benzene in the volatiles produced by heating the
freeze-dried sample (TGA-mass spectrometer) suggests that additional reactions have
occurred. This hypothesis is supported by the viscosity and gel permeation chromato-
graphic analyses reported subsequently in this section.

In view of the potential of this polymer as a high-temperature elastomer, a means
for rapidly and reliably estimating molecular weight of polymers of this structure is
desired. Therefore, the intrinsic viscosities of all the submitted samples were mea-
sured with the intention of generating a viscosity - molecular weight relation. The
intrinsic viscosities, determined in toluene at 30 C using semimicro Cannon Ubbelohde
viscometers in conjunction with a Hewlett-Packard "Autoviscometer", are listed in Ta-
ble II along with the inherent viscosities included in the transmittal information. The
limited range of viscosity covered by these samples precludes their use for generating
a reliable viscosity - molecular weight relation.

The molecular -weight distribution of all the silicon-nitrogen polymer samples
was examined by gel permeation chromatography (GPC). The chromatograms (see
Figures 7-10) were obtained from 4. 4 x 10-3 g/ml tetrahydrofuran solutions using the
Waters gel-permeation chromatograph. The most surpriding feature is the marked
increase in the amount of high-molecular-weight molecules produced by freeze drying
Sample HR-109 from a benzene solution. Also, it is interesting to note that all the
samples have molecules which are retained on the GPC columns longer than the 4 x 105
molecular -weight polystyrene standard. Also, all traces have a shoulder with a

10
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retention volume of about 170 ml. This shoulder could arise from unreacted monomer
or end-capping agent. However, the polystyrene standard calibration curve suggests
that the molecular weight of the species producing the shoulder is in the 800 to 1000
range. A dimeric or trimeric species might be the source.

TABLE II. SOLUTION-VISCOSITY DATA ON SILICON-NITROGEN
POLYMERS

Sample [r7], dl/g r7inh(a), dl/g

HR-109 -- 0.28
Freeze-dried HR-109 0.53 --

HR-11 0.69 0.62

HR-112 0.48 0.43

(a) Obtained on 0. 5 percent solutions in toluene by MRI.

Since it is planned to use the GPC data to identify synthesis conditions which
optimize molecular weight and molecular-weight distribution of this polymer structure,
it is desirable to convert the GPC data to a form in which it is independent of the sys-
tem used to determine it. This is best accomplished by converting the GPC distribu-
tion to a molecular weight distribution. Such a conversion requires establishment of a
relationship between retention volume and molecular weight, i. e. , a calibration curve.
As a first approximation to such a relationship, polystyrene "standards" characterized
by ArRo Laboratories, Incorporated, were used to provide an indication of the molec-
ular size associated with retention volume. While the hydrodynamic volume could be
used to convert the calibration curve obtained with the polystyrene standards to one
appropriate for narrow molecular-weight distribution (MWD) silicon-nitrogen poly-
mers( 6 ), application of such a curve to a broad MWD sample requires correction for
zone broadening and skewing( 7 ). In view of the difficulties associated with these correc-
tions, a relatively new approach for converting GPC data to MWD by use of Mw and Mn
data obtained by light scattering and osmometry, respectively, was chosen. In this
approach, an artificial calibration curve is constructed which leads to a MWD whose
Mw and Mn are equal to that expected from the light scattering and osmometric data.
Since the artificial curve embodies corrections for zone broadening and skewing, it will
differ from the calibration curve obtained using narrow MWD standards.

The Mw of Sample HR-112 was determined by light scattering from cyclohexane
solutions at 30 C. The dn/dc of this polymer in cyclohexane was 0. 087 ml/g. The
Zimm plot constructed from the light-scattering data, shown in Figure 11, indicates
an Mw of 250, 000. Comparison of this molecular weight with the observed intrinsic
viscosity suggests that the molecule is very compact in toluene, i. e. , toluene is not
a thermodynamically good solvent.

The number-average molecular weight of Samples HR-112 and HR-109 is being

determined by vapor pressure osmometry. Initial results indicate their molecular
weights are 7,000 and 11, 000, respectively. However, the relative magnitude of these
values are inconsistent with the relative Mn predicted from the GPC traces. There-
fore, additional effort will be required to establish the source of the inconsistency
before the synthetic calibration curve can be constructed.
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L. W. Breed et al(3 ) has isolated a polymeric product from the thermally-induced
reaction of N, N'bis (dimethylaminodimethylsilyl) tetramethylcyclodisilazane and p-
phenylene-bis-(dimethylsilanol). If the reaction has proceeded as expected, character-
ization of this product should provide data which indicate the effect on properties of

substitution of a p-phenylene link for the diphenyl ether link contained in the previously
characterized samples. A sample of this product, labelled 1074-65, was submitted to
Battelle for characterization.

As with the previously characterized Si-N samples, the sample had a strong amine
odor when received. The inability to remove the amine odor suggests a continuing re-
action with liberation of an amine. The change in solubility from the 38 percent re-
ported by Breed( 8 ), to less than 5 percent found at Battelle suggests crosslinking is the
primary reaction leading to liberation of amine. Breed(5) has suggested a mechanism
for this reaction.

With the exception of silicon, the elemental analyses for this sample, shown in
Table III are in good agreement with the proposed structure. The discrepancy between
the silicon results obtained by Clark Microanalytical Laboratory and those reported
by Breed suggests analytical difficulties. As a check of Clark's technique, the sample
was submitted to Spang Microanalytical Laboratory for silicon analysis. The Spang
result confirms the existence of difficulty in the silicon analysis. Since Breed used
Spang for his analysis,, the agreement with the more recent Spang result is surprisingly
poor.

TABLE III. ELEMENTAL ANALYSIS OF p-PHENYLENE-SUBSTITUTED
SILICON-NITROGEN POLYMER 1074-65.

Analysis, percent

Element Calculated Found (a) Found (b) Found(c)

C 44.63 43.68 -- 44.03
H 8.26 8.03 -- 8.Z6
N 5. 78 6.36 -- 5.78
0 6.61 ......
Si 34.71 27.9 :h 1. 7 (d) 35.89 34.66

(a) Clark Microanalytical Laboratory.
(b) Average of duplicate analyses by Spang Microanalytical Laboratory.
(c) Reported by Breed, et al.( 1 ).
(d) Average of three runs made over a period of 2 days.

A TGA thermogram of the sample (see Figure 12) was obtained between room tem-
perature and 800 C using a 4 C per minute heating rate. Since the weight loss to 200 C
was only 1.86 percent, it is unlikely that the DTA endotherm below this temperature was
a result of volatilization of impurities. Since the proposed structure of Sample 1074-65
has not been confirmed, a conclusion as to the thermal stability of its structure relative
to that of the diphenyl ether linked polymers are subject to question. The thermograms
presented in Figures 4 and 12 suggest that substitution of the phenylene link for the
diphenyl ether link of HR-109 has substantially reduced the upper service temperature,
although a phenylene link is thermally more stable than a diphenyl ether link. This
anomaly suggests that the proposed and actual sample structures differ. The difference
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in the weight of the residue at 800 C could indicate differences in the mode of fragmenta-
tion of these structures. Exposure of the residue to oxygen at 800 C did not appreciably
change its weight, suggesting that it was SiO2 .

A thorough solvent search with 1074-65 using the microscopic technique(l) did not
indicate complete solubility in any solvent. However, substantial and rapid polymer
swelling occurred in alkanes, ethers, ketones, simple aromatics, and their fluorinated
analogs. If this sample is crosslinked, a noncrosslinked sample would probably be
soluble in most or all of these solvents. Slight swelling was observed in nitroalkanes
and nitriles, while no reaction was noted for alcohols, amides, or sulfoxides. The
solvents tested, as well as their pertinent thermodynamic properties, are listed in
Table IV. The solvent formulating map generated with this sample is shown in
Figure 13.

The volume change on swelling in toluene at 23 C for silicon-nitrogen polymer
1074-65 was determined with a Jolly Balance (for a description see reference 2). The.
430 percent volume increase (average of two runs) indicates a moderate crosslink fre-
quency comparable with the previously characterized Si-N samples(2).

The sample was examined by DTA between room temperature and 700 C using
a heating rate of 4 C per minute. The thermogram is shown in Figure 14. The broad
endotherm between 50 and 200 C may be a result of continuation of crosslinking and
liberation of dimethylamine. The very broad exotherm above 200 C probably reflects
sample pyrolysis. Start of the exotherm at 200 C suggests that pyrolytic breakdown
begins at this temperature.

The sample was also examined by Tracor, Incorporated (Austin, Texas) on their
H-5 subambient DTA. The slope change in the thermogram at about -38 C (see Fig-
ure 15) is interpreted as the glass-transition temperature of this sample. This transi-
tion is somewhat lower than for the previous Si-N samples, although the p-phenylene
link would be expected to reduce chain flexibility and thereby raise the glass transition
temperature. The inconsistency is probably a result of differences between the pro-
posed and actual sample structures.

Perfluoroalkyl Bibenzoxazole Polymers

Two polymer samples prepared at Dow Chemical Company were received. These
samples, labelled 9659-129 and 9659-140, were prepared by the reaction of dihydroxy-
benzidine with

H H

N N 0
II II II

H3 CO--C--(CFzCFZOCF 2 CF2)Z- C-OCH3  2CH 3 C--OH,

in the case of Sample 9659-140, and with
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TABLE IV. SOLVENTS USED IN SOLVENT SEARCH WITH p-PHENYLENE-

SUBSTITUTED SILICON-NITROGEN POLYMER 1074-65 AND

PERTINENT THERMODYNAMIC PROPERTIES

Solubility

Literature Parameter, H-Bonding Dipole

Boiling Point, Ecal 1l/2 Index, Moment,

Solvent C cc/ -/a) pja)

Decane 174 6,6 0 0

n-Hexane 69 7.3 0 0

Cyclohexane 81 8.2 0 0

Toluene 110 9.2 4,5 0,4

Benzene 80 9.2 0 0
Carbondisulfide 46 10.0 0 0

Nitrobenzene 211 10.0 2.8 4.3
Acrylonitrile 78-9 10,5 5,7 3.8
Nitroethane 115 11.1 2.5 3.6
Acetonitrile 82 11.9 6.3 3,9
Nitromethane 101 12.7 - 2,5 3,4
Ethylenecarbonate 255 14.7 4,9 1. 0
Malononitrile 220 15. 1 2. 5 (b)

Dibutylether 142 7.1 11.0 1.2
Diethylether 35 7,4 13.0 1. Z

Diisopropylether 68 7.8 12.3 1.2

2-Undecanone 228 7.8 7.9 2.7
Methylethylketone 80 9.3 7.7 2.7
1, 4-Dioxane 101 9.9 9.7 0
Acetone 56 10.0 9.7 2,9

N, N-diethylformamide 177-8 10.6 11.7 2.0
N, N-dimethylacetamide 165 10.8 12.3 2.0

N, N-dimethylformamide 153 12. 1 111.7 2.0
N-Ethylacetamide 205 12.3 12,0 2.0
Dimethylsulfoxide 189 12.9 7.7 4.0
N-Ethylformamide 198 13.9 12,0 2.0

Dimethylsulfone 241 14,5 4.5
-y-Butyrolactone 206 15.5 9,7 2.7
N-Methylformarnide 198 16.1 12,0 2.0

Diethylamine 56 8.0 18.0(b) 0.9

Hexamethylphosphoramide 170 10.5 1 8 .0 (b) --

Pyridine 116 10.7 18,1 2.2
2-Propanol 82 11.0 18,7 1. 6
Aniline 184 11.8 18.1 1.5
N, N-Dimethylaniline 193 12,0 14,3 1.5

Formic Acid 100 12.1 1 8 , 0 (b) 1.5
Ethanol 78 12,7 18,7 1,7
Methanol 65 14.5 18.7 1,7
Formamide 195 19.2 18.0 3,2

Methanesulfonic Acid

Hexafluoroxylene 116 7,5 -- 0
Benzotrifluoride 101-2 8.1 -..--

Hexafluorobenzene 81-2 8.2 -- -

m-Bromobenzotrifluoride 153,4 8,6 ....

(a) From Crowley(9).
(b) Estimated Value.
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H H/\
N N 0II II II

t 3 CO--C--(CFZCF2 OCF 2 CF 2 )4 - C-OCH 3 - 2CH 3 C-OH,

to produce Sample 9659-129. The longer link between the bibenzoxazole groups in

these samples than was present in the previously characterized nonelastomeric sam-

ples (perfluorosebacate bibenzoxazole) is expected to introduce more chain flexibility

and thereby produce elastomeric properties. The hard gum-like properties of the as-

received samples suggests that the structure modification has produced the expected

result to some degree.

The differences in the TGA thermograms of these samples (see Figure 16) casts
doubt on the structure of one of them. Since structural defects would be expected to

reduce thermal stability, it appears likely that Sample 9659-129 has appreciable de-

fects. If this is the case, then samples of the idealized structure indicated for Sam-

ple 9659-140 could have upper service temperatures below 450 C.

Subambient DTA thermograms were obtained on Sample 9656-129. One of these,

shown in Figure 17, indicates a broad transition at approximately -10 C and an

additional transition at 12 C. These transitions were confirmed by thermograms ob-

tained with different amounts of sample. The longer straight-chain link between

bibenzoxazole rings in Sample 9659-140 suggests that lower transition temperatures
can be expected.

The inherent viscosities of the samples were measured in hexafluoroisopropanol
at 30 C. These were 0. 23 dl/g and 0. 28 dl/g for Sample 9659-140, and Sample 9659-
129, respectively. In addition, the intrinsic viscosity of Sample 9659-140 was mea-

sured in trifluorotoluene (TFT) at 30 C. The 0. 17 dl/g observed indicates TFT is a
poorer solvent than hexafluoroisopropanol. The observed Huggins' constants indicated

no appreciable association in this solvent.

A solvent search was performed with Sample 9659-140 by the microscopic tech-

nique(l) using the list of solvents in Table XI. None of the solvents included in the list
dissolved the sample. However, greater than 0. 1 percent solutions were obtained in

hexafluoroisopropanol, benzotrifluoride, hexafluoroxylene, and hexamethylphosphor-
amide. At present, we have not been able to devise an effective means for estimating

the divided solubility parameters of these solvents which would permit inclusion of them
in the standard list. The solvent formulating map (Figure 18) suggests that this mate-

rial reacts with many common solvents as was the case for the silicon-nitrogen
polymers.

The molecular weight of the previously characterized(?) sebacate polymers

(Samples 9659-94H and 10295-78H) and the new elastomeric polymers (Samples 9659-
129 and 9659-140) are of interest; the former, to indicate the success of the synthesis

chemistry involved, and the latter as an indication of the significance of the measured
thermal properties. Previously reported inherent viscosity - molecular weight data for

the sebacate polymers( 1 0 ) appear to be inconsistent. A possible source of the inconsis-

tency is the use of membrane osmometry to measure number-average molecular weights
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that apparently are below 20, 000. Initial efforts at Battelle to determine molecular
weights of these samples were by use of vapor-pressure osmometry. However, the
low heat of vaporization and the strong affinity for water of hexafluoroisopropanol (HFI),
the only feasible solvent, prevented analysis by vapor-pressure osmometry.

Since the osmometric techniques for molecular-weight measurement could not be
used with these polymers, the more expensive light-scattering technique was investi-
gated. The only solvent for the sebacate polymers is HFI. Hence, its appropriate-
nes's for light scattering was investigated. The dn/dc of solutions of the polymers were
all adequate for light scattering, i. e., greater than 0. 01. The dn/dc values for Sam-
ples 9659-94H and 10295-78H are 0. 153 and 0. 151, respectively. Within experimental
error, the values are the same, suggesting that the structures of the samples are very
similar.

During initial work with HFI, several undesirable effects on personnel were ob-
served. Headache, eye irritation, numbing of extremities, leg cramps, and hyperemia
were all attributed to exposure to HFI. As a result of these effects, subsequent han-
dling was only permitted in polyethylene "glove bags" which were purchased from Instru-
ments for Research and Industry (Cheltanham,, Pa.). In addition to reducing personnel
exposure, use of the glove bags is expected to greatly reduce the chances for moisture
pickup by the solvent. Therefore, solvent scattering-intensity changes from moisture
pickup will be minimized.

Severe difficulty was encountered in clarification of HFI for light scattering.
Initially, the apparatus shown on the left of Figure 19 was assembled to permit re-
peated filtrations without exposure to the air. The "T" valves are rotated so that the
solvent passes through the filter but returns through the Teflon tubing. However, even
12 passes through a 0. 5-y Millipore Solvinert filter failed to remove particles suf-
ficiently large to cause gross instability of scattering-intensity readings. The dif-
ficulty was attributed to inability to remove particulate matter from the light-scattering
cell by washing with HFI. The "modified" apparatus in Figure 19 was assembled to
avoid the problem. Since filtration required sustained application of pressure on the
solvent, the upper syringe was pressurized with N2 to make performance of the filtra-
tion step easier. The cleanliness of the light-scattering cell was checked by measuring
the z-value of clarified benzene in the cell. Once a z-value less than 1. 01 was obtained,
the benzene was discarded and the cell inverted to permit drainage. After 18 passes
through the modified filtration apparatus, HFI was transferred to the "clean" light
scattering cell. The solvent still contained sufficient particulate matter to make the
scattering intensity unstable. The possibility that what was suspected to be particulate
matter in the solvent was actually air bubbles was eliminated by allowing the filtered
solution to stand in the light scattering cell for 16 hours before attempting to measure
its scattering envelope.

Although the sebacate polymers are sufficiently soluble for light scattering
analysis only in HFI, several fluorinated solvents have been identified in which suffic-
iently concentrated solutions of the new elastomers can be prepared. The higher boil-
ing point and lesser tendency for water pickup than HFI indicated trifluorotoluene (TFT)
might be a good choice. TFT was successfully clarified and the dn/dc of solutions
of Sample 9659-140 was acceptable for light scattering. Initial light-scattering results
indicated that the sample had a molecular weight in excess of 100,000. However,
a peculiar Zimm plot (concave upward) casts doubt on the validity of these results.
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Measurement of the scattering intensity with a filter in the scattered beam which was
opaque to the incident frequency indicated that the sample was fluorescing appreciably.
Preliminary measurement with an interference filter in the scattered beam which only
passes the incident frequency (50 percent transmittance at +h Z5A from incident fre-
quency) indicated the molecular weight of the sample is considerably below 100, 000.
This is in line with the molecular weight of a random-coil polymer with an intrinsic
viscosity of 0. 17 dl/g.

To have sufficient sample to prepare solutions of appropriate concentration for
light scattering, it was necessary to recover the polymer from the solutions used in
the previous preliminary measurements. The solutions were freeze dried, the residue
redissolved in TFT, and precipitated with anhydrous methanol. However, the IR
spectrum of the precipitate did not correspond to the spectrum of the initial sample.
Therefore, additional material will be required and appropriate solvents identified
before light-scattering determination of molecular weight can be performed.

Polypyr rolone Polymers

A sample of polymeric product of the thermally induced condensation of 1, 2, 5,6-
tetraaminoanthraquinone with the dibisulfite adduct of terephthalaldehyde, labelled PE-
68, was received for characterization. The sample was prepared in C. S. Marvel's
laboratory and is believed to have the structure

o %-N=~

N

0

\ H Jn

Elemental analysis of this sample, shown in Table V is in good agreement with the
proposed structure.

TABLE V. ELEMENTAL ANALYSIS OF POLY-
PYRROLONE POLYMER SAMPLE
PE-68

Analysis, percent

Element Calculated Found(a)

C 72.93 72.33
H 2.76 3.33
N 15.47 15.19
0 8.84 9. 15(b)

(a) Clark Microanalytical Laboratory - average of two runs.
(b) By difference.
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A solvent search with Sample PE-68 using the microscopic technique(l) and the
solvents listed in Table V indicated that solutions formed only in highly acidic solvents.
A dark red-orange solution was produced with methanesulfonic acid and some interac-
tion with formic acid was observed in addition to formation of solution in sulfuric acid.
There was no observed interaction with the other solvents tested.

The IR spectrum of the sample (see Figure 20) contains strong evidence for N-H,
C-N, and C=N bonds along with aromic C-C. A strong band between 1200 and 1300 cm-I

could include absorption from anthraquinone, aromatic amine, aromatic acid, and
cyclic anhydride.

The DTA thermogram of this sample, Figure 21, provided no evidence for a glass
transition or crystalline melting. The endothermal peak at 68 C is probably indicative
of solvent loss.

The TGA thermogram (see Figure 22) of this sample suggests that the upper ser-
vice temperature of materials with this structure is below about 550 C. The initial
weight loss of about 4 percent was found by mass spectral analysis of the volatiles to be
caused by loss of water. Nitrogen, water, and carbon dioxide were identified in the
volatiles of the sample at 400 C.

A sample of a different polypyrrolone polymer prepared in C. S. Marvel's labora-
tory and labelled PE-82 was received for characterization. The sample was prepared
by polycondensation of 1, 2, 5, 6-tetraaminoanthraquinone (TAA) with pyromellitic acid
dianhydride (PMDA) and is believed to have the structure

0

0

II n
N ,,Cý C~C

11 -- n
0

It should be noted that, if the proposed structure is attained, the polymer has no single
links, i.e., it is a true ladder polymer, in contrast with PE-68.

The results of elemental analysis shown in Table VI are not in good agreement
with those calculated from the proposed structure. If one calculates the elemental con-
tent expected if 4 moles of water per repeat unit are present, better agreement with the
observed elemental content is obtained. Since the material is polymeric, the water
suggested by the elemental analysis is probably indicative of incomplete cyclodehydra-
tion and retained water.
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TABLE VI. ELEMENTAL ANALYSIS OF POLYPYRROLONE POLYMER
SAMPLE PE-82

Analysis, percent

Calculated for Calculated for

Element Proposed Structure Proposed Structure + 4 moles H20 Found(a)

C 69.56 59.26 60.36
H 1.45 2.88 3.67
N 13.53 11.52 11.20
0 15.46 26.34 24 . 7 6(b)

(a) Average of duplicate analysis.
(b) By difference.

The IR spectrum (see Figure 23) contains evidence for an aromatic carboxylic acid
in agreement with the incomplete cyclodehydration suggested by the elemental analysis.
As in Sample PE-68, there is a strong band between 1200 and 1300 cm- 1 , indicative of
absorption from anthraquinone, aromatic amine, aromatic acid, and cyclic anhydride.

A solvent search using the microscopic technique(l) and the solvents listed in
Table VII, indicated solubility in highly acidic solvents. This is expected for a sample
with basic nitrogens. A dark-green solution was obtained with this sample in methane-
sulfonic acid in contrast with the dark red-orange solution obtained with Sample PE-68.
When this sample was left in contact with several solvents for 4 to 6 hours, discolora-
tion of the solvents was observed. Sample PE-68 was also examined in the solvents
where PE-82 reacted slowly. The solvents where the reactions occurred are listed in
Table VII. A solvent formulating map for PE-82 is shown in Figure 24.

TABLE VII. INTERACTIONS OF POLYPYRROLONE POLYMER
SAMPLES PE-82 AND PE-68 WITH VARIOUS
SOLVENTS

Color Change(a)
Solvent PE-82 PE-68

Formic acid Pale yellow Dark red
Dimethylacetamide Dark yellow Orange-brown
Dimethylformamide Orange -brown Orange-brown
Diethylformamide Dark yellow Yellow-brown
N-Ethylacetamide Pale yellow None
N-Ethylformamide Yellow None
N-Methylformamide Reddish-black None
Formamide Yellow None
Dimethylsulfoxide Orange Red-brown

(a) Solvents are initially water-white liquids.

The DTA thermogram of Sample PE-82, Figure 25, suggests loss of surface
volatiles between room temperature and 100 C followed by a gradual exothermal process
between 100 and 500 C. The shape of the thermogram above 100 C suggests that the
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rates of the thermally induced reactions which are occurring do not differ in their tem-
perature dependence.

The TGA thermogram, Figure 26, confirms the conclusions drawn from the DTA
thermogram. The initial 1. 6 percent weight loss is indicative of loss of absorbed vola-
tiles. The nearly linear loss of weight between 100 and 900 C is consistent with a
weight-loss mechanism following several overlapping mechanisms.

The mass spectrometer - TGA combination was used to identify the volatile prod-
ucts evolved during heating of the PE-82 sample. It is clear from the plot of the inten-
sity of the 18 m/e peak as a function of temperature (see Figure 27) that water is
evolved by two different mechanisms. It appears likely that the first peak is produced
by loss of physically retained water, and the second by cyclodehydration. Evolution of
CO 2 from this sample suggests decarboxylation is occurring in addition to cyclodehydra-
tion. Since cyclodehydration decreases the concentration of acid groups, the observed
decrease in rate of evolution of CO2 at high temperatures would be expected. Any
decarboxylation that occurs will prevent cyclodehydration and therefore result in ladder
defects. In addition, the removal of acid groups will increase the probability of inter-
molecular reactions involving, loss of water.

Ferrocenylene Sample

A sample of the product obtained by heating 1-carboxy-2-chloroferrocene, labelled

48133-29-P, was submitted to Battelle for determination of the reaction mechanism to
improve polymerization technique and assist polymerization of more highly chlorinated
monomers. The elemental analysis listed in Table VIII was obtained from Schwarzkopf
Analytical Laboratory. It is in better agreement with Structure I than with Structure II,
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although it is difficult to rationalize a mechanism by which Structure I would be produced.

TABLE VIH. ELEMENTAL ANALYSIS OF FERROCENYLENE
SAMPLE 48133-29-P

Analysis, percent
Calculated

Element Structure I Structure II Found(a)

C 45.56 53.60 46.79
H 2.41 Z.84 3.26
Cl 12.08 14.41 15.82
Fe 28.89 22.65 26.10
0 11.05 6.50 8.03(b)

(a) Average from duplicate analysis.
(b) By difference.

The infrared spectrum of the product was examined as a first step toward identifi-
cation of the reaction mechanism. The spectrum (see Figure 28) contains large bands
and broad nondistinctive bands in the 1620-1300 cm- 1 region characteristic of an
oxidized mixture.

Since analysis of the structures of the product was not fruitful for elucidating the
reaction mechanism, identification of the volatiles produced by the reaction was under-
taken. A sample of the "monomer" (l-carboxy-2-chloroferrocene prepared by
F. Hedberg, AFML) was examined by DTA to identify a temperature suitable for carry-
ing out the reaction. The thermogram (see Figure 29) indicates melting at 178 C and
an exothermal process starting at a temperature just above melting. The exothermal
process was over by the time the sample reached 230 C, suggesting that the reaction
rate is appreciable below this temperature.

A programmed TGA obtained on the monomer at 0. 1 torr indicated 75 percent
weight loss by 150 C. Therefore, the reaction occurring at temperatures greater than
180 C could not be run under vacuum on the TGA balance as required to continuously
monitor the evolved products with the mass spectrometer (Battelle's AEI MS-10). When
heated at atmospheric pressure under N 2, the sample lost 35 percent by weight between
175 and 250 C. After completion of the programmed heating, the atmosphere of the TGA

system was introduced into the MS-10 through a variable leak value. No significant peaks
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were detected, possibly, as a result of absorption of the evolved products on the walls
of the TGA hangdown tube. While loss of Cl and COZ from each "monomer" unit would
produce a 30 percent weight loss, the elemental analysis given in Table IX is incon-
sistent with this.

In an effort to reduce the difficulties encountered with identification of the volatile
products by TGA-mass spectrometry, the reaction was carried out in a glass U-tube.
The U-tube was connected to a specially designed trap (for description see Reference 2)
to permit collection of the volatiles from the reaction before analysis. Nitrogen was
bled through the U-tube during the reaction to sweep the volatiles into the trap, which
was maintained at liquid-nitrogen temperature. The time required to reach the reaction
temperature was minimized by preheating a silicone oil bath to the desired temperature
before inserting the U-tube with the sample in the bath. The components collected in
the trap were separated by gas chromatography (GC) using a Porapak QS column. They
were tentatively identified by comparison of their retention times with those of expected
products of the reaction. This analysis indicated that H20 and CO2 were produced in a
ratio of approximately 16:1. Several other peaks were also observed. Of these, only
a peak with retention time close to water was present in appreciable amounts. These
results suggest that the predominant reaction is formation of anhydride with some de-
carboxylation. However, if one assumes that these are the only reactions occurring,
neither the reported elemental analysis nor the sample insolubility would be explained.
Therefore, it appears likely that thermal breakdown of the ferrocene moiety also occurs.
It is planned to use high-resolution mass spectrometry to identify the additional compo-

nents observed in the GC trace. Hopefully, these will include cyclopentadiene and its
fragments. In addition, it is planned to conduct the reaction in solution at less than
180 C in an effort to reduce the extent of reaction.

Polyspirocyclobutane Polymers

Samples of this class, labelled 83A and 83B, which are expected to have the
structure

0

II -

n
0

were received for characterization. They were prepared by C. M. Sharts and coworkers
by the general reaction(l1I)

1. 50C12  FC/ /N .. 1=
2. Et 3 N in benzene
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The molecules are expected to be terminated with carboxyl groups. The IR spectra of
these samples were included in the transmittal information. In these spectra, that of
Sample 83A had no detectable absorption in the carboxyl carbonyl region, while that of
Sample 83B had considerable absorption in the carboxyl carbonyl region. These results
suggest that Sample 83A is closer to the proposed structure. Therefore, 83A was
chosen as representative of structures of this type, and is being thoroughly characterized
at Battelle.

Elemental analysis of these samples, shown in Table IX is in poor agreement with
the proposed structure. Clark reports Sample 83A was "uncontrollably explosive, with-
out melting", which obviously made analysis difficult. However, the difference between
the observed and calculated result far exceeds the estimated standard deviation of the
measurement. It is interesting that IR spectrometry indicates structural differences be-
tween these samples which are not confirmed by the elemental analysis.

TABLE IX. ELEMENTAL ANALYSIS OF THE POLY -
(TRISPIRO[ 3. 1. 1. 3. 1. 11 TRIDECANE-
1, 3-DIONE) SAMPLES 83A AND 83B

Analysis, percent
Found(a)

Element Calculated 83A 83B

C 78.00 7 3 . 9 5  0. 4 0 (b) 74.55
H 6.00 6 . 8 7  0 . 2 1 (b) 7.76
0 16.00 19. 18(c) 17. 69(c)

(a) Clark Microanalytical Laboratories.
(b) Average and estimated standard deviation of five measurements.
(c) By difference.

A solvent search with Sample 83A, using the microscopic technique( 1 ) and the
solvents listed in Table IX, indicated solubility to greater than 0. 10 percent in pyridine
and aniline. The sample was partially soluble in hexamethylphosphoramide (HMP) and
N, N-dimethylaniline. The combination of solvent properties where solution formation
is favored for this sample is shown in Figure 30.

A solvent search with Sample 83B using the same technique and solvents as for
Sample 83A indicated solubility in many basic solvents. These include HMP, pyridine,
aniline, DMF, DMAC, DMSO, as well as all nitrogen-substituted formamides and
acetamides. The solubility of Sample 83B in basic solvents gives additional support to
the presence of carboxyl groups. The solvent formulating map for this sample is shown
in Figure 31.

The TGA thermogram of Sample 83A, Figure 32, indicates that this sample does
not have good thermal stability. The shape of the thermogram suggests that the weight
loss observed at 200 C is occurring by the same mechanism as that at the higher tem-
peratures. If this is the case, the upper service temperature of materials with this
structure would be below 200 C.
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The DTA thermogram of Sample 83A (Figure 33) exhibited no definitive endotherm
attributable to solvent loss and no enthalpic peaks other than the broad exothermal peak
at 400 C corresponding to the maximum rate of weight loss in the TGA thermogram. The
DTA thermogram was obtained on Battelle's new R. L. Stone DTA, which has sub-
ambient capabilities. The heating rate used in this analysis was 5 C/min as compared
with the 4 C/min used previously. This difference is unlikely to appreciably affect the
shape of the DTA thermogram. Although heating rate can be continuously varied be-
tween 0. 5 C/min and 50 C/min, 4 C/min is not a convenient set position on this
instrument.

In an effort to elucidate the breakdown mechanism of Sample 83A, the source of
the weight loss of the sample was examined using the TGA-MS10 combination. By
100 C, an m/e peak at 44 was observed, suggesting loss of CO 2 . In addition, peaks
attributable to residual SOC12 were detected. By Z50 C, the peaks which were observed
were so numerous that identification of the thermal fragments became extremely diffi-
cult. GC separation of the thermal fragments before introduction into the mass
spectrometer appears to be the best approach to identification of fragmentation prod-
ucts of this sample.

The IR spectrum of Sample 83A (see Figure 34) shows a strong carbonyl band at
1735 cm- 1 , an absorption expected for an aliphatic ester or ketone attached to a strained
(less than 6 carbon) ring. There is no evidence for a ketone group or acid carbonyl.
A shoulder on the carbonyl band at about 1710 cm- 1 could be from residual acid.

Diethyl- 3,3 -bis (hydroxymethyl)cyc lobutane -

1, 1-dicarboxylate Polymers

Samples expected to be spiropolyesters (labelled DLS-30 and DLS-31), which were
prepared by heating diethyl-3, 3 -bis (hydroxymethyl)cyclobutane- 1, 1 -dicarboxylate (12),
were received for characterization. Sample DLS-30 was prepared in the presence of
antimony(III) oxide and calcium acetate dihydrate, while DLS-31 was not. The proposed
structure is

0

l OCH 2 O

OCHZ

These samples were transmitted to Battelle in glass crystallization dishes. Separation
of the samples from the glass was made difficult by the strong adhesion of the polymer
to the glass, and the shattered state of the dishes.

Elemental analysis of the samples, shown in Table X, are in fairly good agree-
ment with the proposed structure. The results in the table are corrected for ash con-
tent, which was attributed to residual glass chips.
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TABLE X. ELEMENTAL ANALYSIS OF DIETHYL 3,3-
BIS (HYDROXYMETHYL) CYCLOBUTANE-
1, 1-DICARBOXYLATE SAMPLES DLS-30
AND DLS-31

Analysis, percent
Found(a)

Element Calculated DLS-30 DLS-31

C 57.14 58.07 58.05
H 4.76 5.79 5.64
0 38. 10 36.44 36.31

(a) Clark Microanalytical Laboratories - average of two runs.

A solvent search using the microscopic technique( 1 ) did* not indicate complete
solubility in any solvent. However, both samples interacted slightly with diethylform-
amide, dimethylfo rmamide, dimethylacetamide, N-ethylacetamide, and aniline. The
solvent formulating map for these samples, Figure 35, was generated with solvents
listed in Table IV.

Solvent Search

The solubility parameter approach to prediction of solution formation proposed by
Hildebrand and Scott( 1 3 ) employs the square root of the ratio of the heat of vaporization
(Evap) and molar volume (V) of the solution components to calculate their heat of mix-
ing. This approach has presented major problems when dealing with mixtures where
interactions other than dispersion forces are possible. Since situations of this type
predominate when dealing with the new high-temperature polymers, there is consider-
able incentive for developing means for dealing with them. The difficulty has been
attributed to incomplete description of the nature of the solvents by (Evap/V)1/2 although
it could also arise from neglect of the entropy of solution implicitly included in the
solubility-parameter. approach. Substantial improvement in the reliability of prediction
was attained by qualitative( 1 4 ) and later quantitative( 9 , 15) addition of a measure of the
H-bonding tendency of the solvent. Additional benefit was derived by addition of the
dipole moment as a solvent parameter affecting solution formation. Crowley et al. (9),
cite considerable solubility data on a few polymers, suggesting that these modifications
improve the reliability of prediction of solution formation.

The recent work of Drago( 1 6 ) provides conclusive evidence that there is an in-
herent error in use of the solubility parameter calculated by the Scott and Hildebrand
method when dealing with potentially interacting solvents. His results unequivocally
demonstrate that in Lewis acid-base reactions, the relative strength of the acid (or base)
depends on the structure of the base (or acid) with which it interacts. Only if the inter-
molecular forces have at least two independent components can his results be explained.
Drago has assumed that the independent force.s can be lumped into electrostatic and
covalent •contributions. Electrostatic forces arise from dipole-dipole, dipole-induced
dipole, and H-bonding interactions while covalent forces arise from London dispersion
interactions. Drago further assumes that the enthalpy of formation of an acid-base

adduct can be written as

AH = EAEB + CACB (1)
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where the E and C terms, respectively, are the electrostatic and covalent character of
the acid and base. By using experimentally determined AH values (either reported in the
literature, or found in his laboratory) for approximately 160 adducts, Drago calculated
a set of self-consistent E and C values by assuming EA = CA = 1 for the acid 12. The
mean error between the calculated and experimentally measured values of AH was less
than 2. 5 percent, a very surprising result in view of the difficulty in measuring AH un-
perturbed by solvent effects.

In describing a solvent as a Lewis acid (or base), one is referring to the electron-
accepting (or -donating) power of the solvent. Since all solvents can be classified in this
manner (usually in both classes), prediction of AH of formation of a solvent by Equa-
tion (1) appears appropriate, particularly in view of the range of electron-donor
strength included in Drago's investigation. Support for this contention is provided by
Bondi and Simken(1 7 ), who accurately predicted heats of vaporization (AEvap) by hydro-
xylated compounds by dividing intermolecular forces into polar and nonpolar components.

The fundamental thermodynamic relation for the free-energy change produced by
mixing solvent and solute, i. e. ,

AGm = AHm - TASm , (Z)

indicates that a small positive AHm or a negative value of AHm and a large positive
ASm favors solution formation. Generally, it can be assumed that the magnitude of
ASm for polymers mixed with low molecular weight solvents is not particularly solvent

dependent. Therefore, approaches to prediction of solution formation have focused on
determining the magnitude of AHm, defined by the relation

AHm= AH 11 + AHZ2 - AH 1 2 , (3)

where AHij is the enthalpy of formation of the i-j adduct. Clearly, AHm is minimized
when AHI is greatest. If the form of Equation (1) is appropriate for description of
intermolecular forces in a solvent, it can be shown that AHlz is greatest when the elec-
trostatic and covalent character of species 1 is equal to that of species Z. Prediction of
AH 1 2 from the geometric mean of AH1 1 and AH22, the approach used by previously
cited workers( 7 -1 0 ), is seriously in error if the electrostatic or covalent character of
species 1 differs appreciably from that of species 2. These arguments strongly suggest
that the divided solubility parameter should be used in solvent searches. This approach
is only practical, however, if a means for accurately predicting the covalent and electro-
static character of a large number of solvents from existing (or readily obtainable) data
can be developed.

It has been suggested( 1 7 - 1 9 ) that the contribution to AEvap of covalent (or disper-
sion) forces in polar solvents can be estimated from the AEvap of their homomorph. (20)
A homomorph of a solvent is the saturated hydrocarbon with analagous structure. The
electrostatic (or polar) contribution is taken as the difference between the heats of
vaporization of the homomorph and the solvent. Recently, Hansen(1 9 ) has suggested that

H-bonding should be considered separately from the other forces contributing to the
electrostatic energy. While his suggestion has merit, techniques for separating these
effects are laborious and inaccurate.

We have used Hansen's data(1 9 ) to develop a list of solvents which provide as
complete coverage of solvent properties as possible with available solvents. The
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coverage attained is illustrated by the solvent formulating map given in Figure 36.
While some regions of the map are not covered, the absence of any solvent with proper-
ties in these regions makes it doubtful that polymers with such properties exist. Of
course, some of the spaces could be filled by mixing solvents and using the rule of
moments for calculating the solubility parameters of the mixture. The solvents used
to form the solvent formulating map and their pertinent properties are listed in
Table XL.

The effect of division of the solubility parameter into electrostatic and covalent
portions on coherency of the region of solubility for polymers examined in this program
is illustrated by comparison of solvent formulating maps generated by this approach
with those generated by the approach previously described(Z). Figure 37 is the solvent
formulating map for the poly(perfluoro-alkylperfluoroalkylenetriazine) BT-21. Apparent
inconsistencies occur at 6 = 12. 0, Y = 18. 0, and 6 = 10. 0, Y = 9.7. When the solubility
parameter of these solvents is divided into the dispersion (covalent) and polar (electro-
static) portion, the inconsistencies in the region of solubility are removed (see Fig-
ure 38). The identified points in Figure 38 were the ones that overlapped in Figure 37.
Comparison of the region of solubility in Figures 39 and 40 provided further evidence
that the divided solubility parameter approach results in a more coherent region of
solubility. In Figure 39, the range between 18. 0 and 18. 7 includes alcohols that are not
solvents and basic solvents which dissolve the polymer. Also, as was the case for the
BT-2l sample, acetone and dioxane differ in their solution forming properties with the
sample although they have similar H-bonding and solubility parameters (6 = 10. 0,
Y = 9. 7). Both of these inconsistencies are absent in Figure 37, where the divided solu-
bility parameters have been used. An apparent inconsistency is present in Figure 40
which was not present in Figure 39. Formic acid dissolved the sample although it is
outside the solution-forming region. However, the polymer, a sample of poly(Z, 4-
diaminotoluene bibenzoxazole), has several basic sites which make it probable that it
exists in formic acid as a protonated species. Since a protonated species would be ex-
pected to have electrostatic properties different from the unprotonated species, it is not
surprising that dissolution occurs in a solvent with properties outside the solubility
region where the unprotonated species dissolves. If this postulate is correct, introduc-
tion of a protonated species into solvents with electrostatic and covalent solubility
parameter components similar to formic acid would be expected to produce solution.
After addition of a small amount of HCM to a mixture of the sample with methanol and
ethylene glycol which were nonsolvents for the unprotonated species, solution formation
occurred. Although ethanol is in the same region of the solvent map, dissolution was
not observed. It is believed that the dielectric constant of ethanol is too low to permit
appreciable concentration of the dissociated protonated species which is soluble in sol-
vents with these properties.
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TABLE XI. SOLVENTS FOR USE IN SOLVENT SEARCH AND

PERTINENT PROPERTIES

Literature Scal•l/2
Boiling Point, Solubility Parameters,cc

Solvent C 6 a 6d

Carbon disulfide 46 0 9.97

Carbon tetrachloride 77 0 8, 65
Cyclohexane 81 0 8.18
n-Hexane 69 0 7.24
Benzene 80 1.48 9.03
Tetralin 207 1,5 9.4
Dipropylamine 111 2,13 7.50
Toluene 110 2,18 8.67
Isopropylbenzene 152 2.50 8. 15
Diisobutylketone 168 2. 64 7.77
Diethylether 35 2,65 7.05
o-Dichlorobenzene 180-3 2.95 9,43
Diethylamine 56 3.18 7, 30
Sym-Tetrachloroethane 146 3.58 9. 15
o-Xylene 144 3,60 8.22
N, N- Dimethylaniline 193 3,99 8.67
Diisobutylcarbinol 172-4 4. 55 7.38
Mesityl oxide 129 4.59 7.97

1, 4-Dioxane 101 4,65 8.55
Methylethylketone 80 5.06 7.77
Pyridine 116 5,18 9. 25

Aniline 184 5. 59 9. 53
Nitrobenzene 211 5.72 8,95
Dichlorodiethylether 178 5.98 8,42
Butyronitrile 118 6,00 7.96
Acetone 56 6.13 7.58
Cyclohexanol 161,5 6.93 8.50
n-pentonol 138 7,17 7.81
Nitroethane 115 7.57 8. 11
Benzyl alcohol 205 7.85 9,04
2-Propanol 82 8,57 7.70
Dimethylfo rmamide 153 8.69 8.52
Dimethylsulfoxide 189 8.77 9,42
-y-Butyrolactone 206 8. 82 9.26
Propylene carbonate 1Z2/17 min 9.00 9.83

Nitromethane 101 9,30 8,03
Formic acid 100 9,65 7.47
Ethanol 78 10,45 7.73
Ethylene carbonate 244 10.50 10.85
1, 3-Butanediol 204 11.60 8,10

Methanol 65 12.40 7,42

Ethanolamine 172 12,90 8.35
Dipropylene glycol, 229 13.35 7,77
Ethylene glycol 197 14. 02 8.25
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